首页> 外文OA文献 >A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting
【2h】

A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting

机译:一种高阶半拉格朗日不连续Galerkin方法   没有算子分裂的Vlasov-poisson模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we develop a high order semi-Lagrangian (SL) discontinuousGalerkin (DG) method for nonlinear Vlasov-Poisson (VP) simulations withoutoperator splitting. In particular, we combine two recently developed noveltechniques: one is the high order non-splitting SLDG transport method [Cai, etal., J Sci Comput, 2017], and the other is the high order characteristicstracing technique proposed in [Qiu and Russo, J Sci Comput, 2017]. The proposedmethod with up to third order accuracy in both space and time is locally massconservative, free of splitting error, positivity-preserving, stable and robustfor large time stepping size. The SLDG VP solver is applied to classicbenchmark test problems such as Landau damping and two-stream instabilities forVP simulations. Efficiency and effectiveness of the proposed scheme isextensively tested. Tremendous CPU savings are shown by comparisons between theproposed SL DG scheme and the classical Runge-Kutta DG method.
机译:在本文中,我们开发了一种无需操作符拆分的非线性Vlasov-Poisson(VP)模拟的高阶半Lagrangian(SL)不连续Galerkin(DG)方法。特别是,我们结合了两种最新开发的新颖技术:一种是高阶非分裂SLDG传输方法[Cai等,J Sci Comput,2017年],另一种是[Qiu和Russo,2000年]提出的高阶特征跟踪技术。 J Sci Comput,2017年]。所提出的方法在空间和时间上均具有三阶精度,该方法在局部质量上是保守的,没有分裂误差,保持正性,对于较大的时间步长大小稳定且鲁棒。 SLDG VP解算器适用于经典基准测试问题,例如Landau阻尼和用于VP模拟的两流不稳定性。对该方案的效率和有效性进行了广泛的测试。通过比较拟议的SL DG方案和经典的Runge-Kutta DG方法,可以节省大量CPU。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号